Development of Electrode Supporting Type Solid Oxide Fuel Cell
نویسندگان
چکیده
منابع مشابه
Development of Copper-Ferrite Spinel Coating on AISI 430 Steel Used as Solid Oxide Fuel Cell
The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The result...
متن کاملDevelopment of Copper-Ferrite Spinel Coating on AISI 430 Steel Used as Solid Oxide Fuel Cell
The bare and pre-oxidized AISI 430 pieces were screen printed by copper ferrite spinel coatings. Good bonding between the coating and the substrate was achieved by the reactive sintering process of the reduced coating. The energy dispersive X-ray spectroscopy (EDS) analysis revealed that the scale is a double layer consisting of a chromia-rich subscale and an outer Cu/Fe-rich spinel. The result...
متن کاملAn octane-fueled solid oxide fuel cell.
There are substantial barriers to the introduction of hydrogen fuel cells for transportation, including the high cost of fuel-cell systems, the current lack of a hydrogen infrastructure, and the relatively low fuel efficiency when using hydrogen produced from hydrocarbons. Here, we describe a solid oxide fuel cell that combines a catalyst layer with a conventional anode, allowing internal refor...
متن کاملIntegrating Multiple Solid Oxide Fuel Cell Modules
Abstract-According to SECA program guidelines, solid oxide fuel cells (SOFC) will be produced in the form of 3–10 kW modules for residential use. In addition to residential use, these modules can also be used in apartment buildings, hospitals, etc., where a higher power rating would be required. For example, a hospital might require a 250 kW power supply. To provide this power using the SOFC mo...
متن کاملCalcium manganite as oxygen electrode materials for reversible solid oxide fuel cell.
For an efficient high-temperature reversible solid oxide fuel cell (RSOFC), the oxygen electrode should be highly active for the conversion between oxygen anions and oxygen gas. CaMnO(3-δ) (CM) is a perovskite that can be readily reduced with the formation of Mn(3+) giving rise to oxygen defective phases. CM is examined here as the oxygen electrode for a RSOFC. CaMn(0.9)Nb(0.1)O(3-δ) (CMN) with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Power and Energy
سال: 1996
ISSN: 0385-4213,1348-8147
DOI: 10.1541/ieejpes1990.116.9_1060